Pitagorina teorema
Prijava dokumenta
Napomena: Neke opcije za prijavu su dostupne samo nakon kupovine dokumenta.
Tema:
NEKI DOKAZI PITAGORINE TEOREME
UVOD
Pitagora (oko 570 pr. n. e. ) je poreklom sa ostrva Samosa. Poznat je kao grčki filozof i
matematičar. U mladosti je mnogo putovao i pri tom sakupljao znanja iz matematike, starih
naroda koji su živeli u tim zemljama, i ne samo matematike već i astronomije. Po odlasku iz
rodnog mesta živio je i delovao u gradu Kroton na jugu Italije. Osnovao je i školu, poznatiju kao
‘Pitagorejski savez’ koju su činili obdareni mladići njemu privrženi. U toj školi bavili su se
teorijom brojeva, osnovama grčke algebre i izučavali proporcije i progresije. Pitagora je na svoje
sledbenike preneo „pitagorejski način života” koji, pored posebnog načina odevanja, ishrane,
obuhvata i rad na formiranju matematike, teorije muzike i astronomije. O tome govori Platon
koji je takođe bio pitagorejac. U geometriji poseban značaj pridaje se teoremi koja nosi
Pitagorino ime, a glasi:
Zbir površina kvadrata konstruisanih nad katetama ,kao stranicama pravouglog trougla,
jednak je površini kvadrata konstruisanog nad hipotenuzom, kao stranicom tog trougla.
Odnosno, ako su a i b merni brojevi dužina kateta i c merni broj dužine hipotenuze, izražene
istom jedinicom za dužinu, onda je:
a
2
+
b
2
=
c
2
Jedna od legendi kazuje da je Pitagora, za ovu teoremu, prineo kao žrtvu bogovima stotinu
bikova, pa se zbog toga ova teorema u srednjem veku nazivala gekatomba, što u prevodu znači
sto bikova. Međutim, nije razrešeno pitanje da li je Pitagora pronašao ovu teoremu ili je ona
rezultat njegove škole ili je možda bila poznata i pre Pitagore, jer je poznato da su još u starom
Egiptu, na 2000 i 3000 godina pre naše ere, znali da je trougao sa stranicama 3, 4 i 5 jedinica
pravougli trougao i ovo koristili za obrazovanje pravog ugla na tlu. Itd.
Jedan od fenomena Pitagorine teoreme je i u tome što, uz različite interpretacije, ima široku
primenu. Danas je poznato oko 400 dokaza Pitagorine tereme za proizvoljan pravougli trougao, a
ovde navodim nekoliko najpoznatijih.
„Kvadrat nad hipotenuzom, to zna svako dete, jednak je zbiru kvadrata nad obe
katete”
Branislav Nušić

Ovaj materijal je namenjen za učenje i pripremu, ne za predaju.
Slični dokumenti