Determinante
SEMINARSKI RAD
SEMINARSKI RAD
Tema: DETERMINANTE
Tema: DETERMINANTE
Determinante
S A D R Ž A J
S A D R Ž A J
Uvod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Uvod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.
3.
Pojam determinante
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.
4.
Determinante drugog reda
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.
5.
Linearna nezavisnost
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.
5.
Primjer 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
6.
6.
Determinante trećeg reda
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.
7.
Pojam minora elemenata kvadratne matrice
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7.
7.
Pojam kofaktora
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.
9.
Način izračunavanja vrijednosti determinante trećeg reda
. . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . .
10.
10.
Primjer 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11.
11.
Zak
Zak
ljučak .
ljučak .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
12.
12.
2

Determinante
Pojam determinante
Ako zadatu kvadratnu matricu A = (a
ij
)
n,n
pomoću određenog pravila izrazimo u
vidu realnog broja, onda takav broj najčešće nazivamo determinantom zadate kvadratne
matrice. Primjera radi, ako je zadata kvadratna matrica drugog reda:
A
=
[
a
11
a
12
a
21
a
22
]
,
realni broj (skalar) u oznaci
Δ
=|
A
|=‖
a
11
a
12
a
21
a
22
‖
,
koji možemo izraziti pomoću određenog pravila u vidu jednog broja, nazivamo
determinantom kvadratne matrice A. Dakle, samo kvadratna matrica može imati
determinantu. Isto kao i kod matrice, determinanta ima glavnu i sporednu dijagonalu.
Skup elemenata (a
11
,a
22
) čini glavnu dijagonalu, dok skup elemenata (a
21
,a
12
)
obrazuje sporednu dijagonalu determinante.
4
Ovaj materijal je namenjen za učenje i pripremu, ne za predaju.
Slični dokumenti