UNIVERZITET U BANJOJ LUCI 

МА

ŠINSKI FAKULTET 

 
 
 
 
 
 
 
 

Dr Valentina Golubović 

- Bugarski 

 

BUKA I VIBRACIJE 

(Skripta – izvodi predavanja) 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Banja Luka, septembar 2010. 

 

 

 

UNIVERZITET U BANJOJ LUCI 

MAŠINSKI FAKULTET 

 
 

 

 

UVOD U VIBRACIJE 

(“Introduction to shock and vibration“, Bruel&Kjaer) 

 
 
 
 
Rezime 

 

U ovoj lekciji dat je uvod u vibracije preko opisa najčešće korištenih mehaničkih parametara 
kojim se opisuje kretanje jednostavnog 

mehaničkog  sistema masa-opruga.  Prikazani  su 

različiti  tipovi  signala,  konverzija  između  različitih  parametara  objašnjena  je  grafički  i 

matematički. Definisane su mjerne jedinice. 
 

Sadržaj: 

 

 

Definicije 

 

Šta je vibracija? 

 

Mehanički parametri 

 

Sistem masa-opruga 

 

Kako izmjeriti vibraciju? 

 

Tipovi signala 

 

Opis  signala u vremenskom domenu 

 

Konverzija: ubrzanje, brzina, pomak 

 

Mjerne jedinice 

 

Ishod lekcije  
 

Ovom lekcijom dobijate osnovno razumjevanje o: 

 

Fundamnetalnoj prirodi vibracija 

 

Meh

aničkim parametrima koji opisuju vibraciju 

 

Tipovima signala 

 

Odnosu između pomaka, brzine i ubrzanja vibracijskog kretanja 

 

Mjernim jedinicama 

 

Važnosti mjernog lanca 

 
 
 
 

background image

Uvod u vibracije 

sitnih komada, betonski 

kompaktori, ultrazvučne kade za čišćenje, razbijači kamena, maljevi, 

nabijači, itd. Pobuđivači vibracija, tzv.šejkeri,  su uređaji koji generišu vibraciono kretanje i 

služe za ispitivanje mašina, uređaja i proizvoda koji moraju zadovoljiti svoje fizičke i radne 

performanse  čak  i  kada  su  podvrgnuti  djelovanju  vibracija  (npr.  elektronički  uređaji  na 
raznim voznim sredstvima). 
 

 

 

Sl.2. Primjeri korisnih vibracija 

 

 

 

PARAMETRI MEHANIČKOG SISTEMA 

 

 

 

 

Sl. 3. Mehani

čki parametri 

 

Svaki  mehanički  sistem  karekterišu    tri  osnovne  fizičke  veličine:  inercija,  krutost    i 

prigušenje. Pri modelovanju mehaničkog sistema inercija se predstavlja masom 

m

, krutost se 

predstavlja oprugom konstante krutosti 

k

, a prigušenje se prikazuje prigušnicom koeficijenta 

prigušenja 

c

.  Djelovanje konstante sile 

F

  na masu 

m

 

proizvešće  kretnje  mase  konstantnim 

ubrzanjem 

a

. Djelovanje konstante sile 

F

 

na oprugu proizvešće sabijanje (pomjeranje) opruge 

za  konstantnu vrijednost 

d

. Djelovanje konstante sile 

F

 

na klip prigušnice proizvešće kretnje 

klipa konstantnom brzinom 

v

.  Odgovarajuće  sile  se  nazivaju  sila inercije, sila u opruzi 

(restituciona sila), sila prigušenja, respektivno. 
 

 

Uvod u vibracije 

ŠTA JE VIBRACIJA? 

 
 

Vibracija  u  opštem  smislu  predstavlja  oscilatorno  kretanje  mehaničkog  sistema  pri 

čemu su pomjeranja tačaka sistema mala u poređenju sa dimenzijama samog sistema. Kaže se 
da tijelo vibrira kada izvodi oscilatorno kretanje oko svog ravnotežnog položaja. Oscilacija je 

periodično  kretanje  oko ravnotežnog položaja, tj. kretanje koje se ponavlja nakon nekog 
vremenskog intervala. 

 
Najjednostavniji oblik vibracionog sistema: masa-opruga 

 
Najjednostavniji oblik vibracionog  kretanja jesu slobodne harmonijske  oscilacije bez 
prigušenja, predstavljene modelom masa-opruga. 

Kada se sistem kojeg čine masa i opruga 

dovede u kretanje zadavanjem nekog početnog pomjeranje ili brzine oscilujućoj masi, on će 
se nastaviti kretanje konstantnom frekvencijom i amplitudom 

teoretski do u beskonačnost. 

Sistem je doveden u oscilovanje koje ima sinusnu formu talasa. 

 

 

 

Sl. 4. Najjednostavniji oblik oscilatornog sistema 

 
Sinusna kriva 

 
Ukoliko pratimo kretanje sistema masa-

opruga  tokom  vremena,  primjetićemo  da  je  to 

kretenje  harmonijsko i opisano  je  sinusnom  krivom 

d

(

t

)=Dsin

ω

n

t

,  definisanom  ampiltudom 

(D) i periodom (T). Frekvencija je broj punih ciklusa oscilacija izvedenih u jedinici vremena 
(u jednoj sekundi), mjeri se u herzima [Hz]  

i  jedanka  je  recipročnoj  vrijednosti  perioda. 

Množenjem frekvencije sa 2

π

  dobija se kružna frekvencija 

ω

n

,  koja je proporcionala 

kvadartnom korjenu 

iz količnika krutosti opuge k i mase m. Frekvencija oscilacija naziva se 

prirodna  ili sopstvena  frekvencija f

n

.  Čitav  sinusni  talas  može  se  opisati  formulom 

d

(

t

)=Dsin

ω

n

t

, gje je 

d

-trenutni pomak  a D- maksimalan pomak (amplituda). 

 

SLOBODNE  NEPRIGUŠENE  VIBRACIJE 

 
Kada sistem masa-opruga slobodno osciluje ukupna energija ostaje konstantna, ali se  tokom 

kretanja mijenja iz kinetičke u potencijalnu i obrnuto. 
U trenutku kada se postiže maksimalni pomak (maksimalno udaljenje mase od ravnotežnog 
položaja), 

brzina, pa time i kinetička enegrija, postaju jednake nuli, a potencijalna energija je 

 

background image

Uvod u vibracije 

 
 

 

SISTEM

 

MASA-OPRUGA- 

PRIGUŠIVAČ 

 

 

Dodavanje  prigušivača  karakteristike 

c

  sistemu  masa-

opruga  rezultovaće  će  smanjivanjem 

amplitude  pomjeranja sistema tokom vremena. 

Što  je  veće  prigušenje  to  će  amplituda 

pomjeranja brže opadati. 
Frekvencija oscilovanja, poznata kao prigušena frekvencija oscilovanja, je konstantna i 
gotovo jednaka prirodnoj frekvenciji. Prigušena prirodna frekvencija opada lagano sa 

povećavanjem stepena prigušenja. 

 
 
 
 
 
 
PRINUDNE VIBRACIJE 

 
 
Ako vanjsku  (prinudnu)  sinusoidalnu silu primjenimo na sistem

, sistem će slijediti silu, što 

znači da će prinudno kretanje sistema imati istu frekvenciju kao vanjska sila. Međutim, može 
postojati razlika u amplitudi i fazi  vanjske sile i pomjeranja sistema, kako je pokazano na 
slici. 

 

Želiš da pročitaš svih 66 strana?

Prijavi se i preuzmi ceo dokument.

Ovaj materijal je namenjen za učenje i pripremu, ne za predaju.

Slični dokumenti